Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Respir Res ; 24(1): 152, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20233721

ABSTRACT

COVID-19-related acute respiratory distress syndrome (CARDS) is associated with high mortality rates. We still have limited knowledge of the complex alterations developing in the lung microenvironment. The goal of the present study was to comprehensively analyze the cellular components, inflammatory signature, and respiratory pathogens in bronchoalveolar lavage (BAL) of CARDS patients (16) in comparison to those of other invasively mechanically ventilated patients (24). In CARDS patients, BAL analysis revealed: SARS-CoV-2 infection frequently associated with other respiratory pathogens, significantly higher neutrophil granulocyte percentage, remarkably low interferon-gamma expression, and high levels of interleukins (IL)-1ß and IL-9. The most important predictive variables for worse outcomes were age, IL-18 expression, and BAL neutrophilia. To the best of our knowledge, this is the first study that was able to identify, through a comprehensive analysis of BAL, several aspects relevant to the complex pathophysiology of CARDS.


Subject(s)
COVID-19 , Pneumonia , Respiratory Distress Syndrome , Humans , Prospective Studies , Bronchoalveolar Lavage Fluid , COVID-19/diagnosis , SARS-CoV-2 , Bronchoalveolar Lavage , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/metabolism
2.
Histopathology ; 83(2): 229-241, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2301780

ABSTRACT

AIMS: While there is partial evidence of lung lesions in patients suffering from long COVID there are substantial concerns about lung remodelling sequelae after COVID-19 pneumonia. The aim of the present retrospective comparative study was to ascertain morphological features in lung samples from patients undergoing tumour resection several months after SARS-CoV-2 infection. METHODS AND RESULTS: The severity of several lesions with a major focus on the vascular bed was analysed in 2 tumour-distant lung fragments of 41 cases: 21 SARS-CoV-2 (+) lung tumour (LT) patients and 20 SARS-CoV-2 (-) LT patients. A systematic evaluation of several lesions was carried out by combining their scores into a grade of I-III. Tissue SARS-CoV-2 genomic/subgenomic transcripts were also investigated. Morphological findings were compared with clinical, laboratory and radiological data. SARS-CoV-2 (+) LT patients with previous pneumonia showed more severe parenchymal and vascular lesions than those found in SARS-CoV-2 (+) LT patients without pneumonia and SARS-CoV-2 (-) LT patients, mainly when combined scores were used. SARS-CoV-2 viral transcripts were not detected in any sample. SARS-CoV-2 (+) LT patients with pneumonia showed a significantly higher radiological global injury score. No other associations were found between morphological lesions and clinical data. CONCLUSIONS: To our knowledge, this is the first study that, after a granular evaluation of tissue parameters, detected several changes in lungs from patients undergoing tumour resection after SARS-CoV-2 infection. These lesions, in particular vascular remodelling, could have an important impact overall on the future management of these frail patients.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Retrospective Studies , Lung
3.
J Gynecol Obstet Hum Reprod ; 52(5): 102569, 2023 May.
Article in English | MEDLINE | ID: covidwho-2285660

ABSTRACT

BACKGROUND: The occurrence of COVID-19 during the pregnancy can cause several negative maternal and neonatal outcomes. Nasopharyngeal viral load is associated with inflammatory markers and might influence the disease severity in non-pregnant patients, but there are no data about the relationship between viral load and perinatal outcomes in pregnant patients. OBJECTIVE: To investigate the hypothesis that nasopharyngeal SARS-CoV-2 load (estimated with real-time polymerase chain reaction delta cycle (ΔCt), measured in hospital clinical laboratories) is associated with perinatal outcomes, when COVID-19 is diagnosed in the third trimester of pregnancy. STUDY DESIGN: International, retrospective, observational, multi-center, cohort study enrolling 390 women (393 neonates, three pairs of twins), analyzed with multivariate generalized linear models with skewed distributions (gamma) and identity link. The analyses were conducted for the whole population and then followed by a subgroup analysis according to the clinical severity of maternal COVID-19. RESULTS: The estimated viral load in maternal nasopharynx is not significantly associated with gestational age at birth (adjusted B: -0.008 (95%CI: -0.04; 0.02); p = 0.889), birth weight (adjusted B: 4.29 (95%CI: -25; 35); p = 0.889), weight Z-score (adjusted B: -0.01 (95%CI: -0.03; 1); p = 0.336), 5' Apgar scores (adjusted B: -0. -9.8e-4 (95%CI: -0.01; 0.01); p = 0.889), prematurity (adjusted OR: -0.97 (95%CI: 0.93; 1.03); p = 0.766) and the small for gestational age status (adjusted OR: 1.03 (95%CI: 0.99; 1.07); p = 0.351). Similar results were obtained in subgroup analyses according to COVID-19 clinical severity. CONCLUSIONS: The estimated maternal nasopharyngeal viral load in pregnant women affected by COVID-19 during the third trimester is not associated with main perinatal outcomes.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Infant, Newborn , Pregnancy , Female , Humans , SARS-CoV-2 , COVID-19/diagnosis , Pregnancy Complications, Infectious/diagnosis , Cohort Studies , Retrospective Studies
4.
Biomolecules ; 11(6)2021 05 26.
Article in English | MEDLINE | ID: covidwho-1310053

ABSTRACT

Angiotensin-converting enzyme 2 (ACE-2) is the main cell entry receptor for severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2), thus playing a critical role in causing Coronavirus disease 2019 (COVID-19). The role of smoking habit in the susceptibility to infection is still controversial. In this study we correlated lung ACE-2 gene expression with several clinical/pathological data to explore susceptibility to infection. This is a retrospective observational study on 29 consecutive COVID-19 autopsies. SARS-CoV-2 genome and ACE-2 mRNA expression were evaluated by real-time polymerase chain reaction in lung tissue samples and correlated with several data with focus on smoking habit. Smoking was less frequent in high than low ACE-2 expressors (p = 0.014). A Bayesian regression also including age, gender, hypertension, and virus quantity confirmed that smoking was the most probable risk factor associated with low ACE-2 expression in the model. A direct relation was found between viral quantity and ACE-2 expression (p = 0.028). Finally, high ACE-2 expressors more frequently showed a prevalent pattern of vascular injury than low expressors (p = 0.049). In conclusion, ACE-2 levels were decreased in the lung tissue of smokers with severe COVID-19 pneumonia. These results point out complex biological interactions between SARS-CoV-2 and ACE-2 particularly concerning the aspect of smoking habit and need larger prospective case series and translational studies.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Bayes Theorem , COVID-19/virology , Female , Humans , Lung/pathology , Male , Real-Time Polymerase Chain Reaction , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Smokers
5.
Mycoses ; 64(10): 1223-1229, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1280362

ABSTRACT

BACKGROUND: An increasing number of reports have described the COVID-19-associated pulmonary aspergillosis (CAPA) as being a further contributing factor to mortality. Based on a recent consensus statement supported by international medical mycology societies, it has been proposed to define CAPA as possible, probable, or proven on the basis of sample validity and thus diagnostic certainty. Considering current challenges associated with proven diagnoses, there is pressing need to study the epidemiology of proven CAPA. METHODS: We report the incidence of histologically diagnosed CAPA in a series of 45 consecutive COVID-19 laboratory-confirmed autopsies, performed at Padova University Hospital during the first and second wave of the pandemic. Clinical data, laboratory data and radiological features were also collected for each case. RESULTS: Proven CAPA was detected in 9 (20%) cases, mainly in the second wave of the pandemic (7/17 vs. 2/28 of the first wave). The population of CAPA patients consisted of seven males and two females, with a median age of 74 years. Seven patients were admitted to the intensive care unit. All patients had at least two comorbidities, and concomitant lung diseases were detected in three cases. CONCLUSION: We found a high frequency of proven CAPA among patients with severe COVID-19 thus confirming at least in part the alarming epidemiological data of this important complication recently reported as probable CAPA.


Subject(s)
COVID-19/epidemiology , Invasive Pulmonary Aspergillosis/epidemiology , Respiratory Insufficiency/mortality , Aged , Aged, 80 and over , Aspergillus , COVID-19/mortality , COVID-19/pathology , Comorbidity , Female , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/mortality , Invasive Pulmonary Aspergillosis/pathology , Male , Middle Aged , Respiratory Insufficiency/microbiology , Respiratory Insufficiency/pathology , SARS-CoV-2
6.
Front Med (Lausanne) ; 8: 637872, 2021.
Article in English | MEDLINE | ID: covidwho-1191689

ABSTRACT

Purpose: The hypothesis of the study was that a multidisciplinary approach involving experienced specialists in diffuse parenchymal lung disease might improve the diagnosis of patients with COVID-19 pneumonia. Methods: Two pulmonologists, two radiologists, and two pathologists reviewed 27 patients affected by severe COVID-19 pneumonia as the main diagnosis made by non-pulmonologists. To evaluate whether the contribution of specialists, individually and/or in combination, might modify the original diagnosis, a three-step virtual process was planned. The whole lung examination was considered the gold standard for the final diagnosis. The probability of a correct diagnosis was calculated using a model based on generalized estimating equations. The effectiveness of a multidisciplinary diagnosis was obtained by comparing diagnoses made by experienced pulmonologists with those made by non-pulmonologists. Results: In 19% of cases, the diagnosis of COVID-19-related death was mainly incorrect. The probability of a correct diagnosis increased strikingly from an undedicated clinician to an expert specialist. Every single specialist made significantly more correct diagnoses than any non-pulmonologist. The highest level of accuracy was achieved by the combination of 3 expert specialists (p = 0.0003). Conclusion: The dynamic interaction between expert specialists may significantly improve the diagnostic confidence and management of patients with COVID-19 pneumonia.

7.
J Pathol ; 254(2): 173-184, 2021 06.
Article in English | MEDLINE | ID: covidwho-1098912

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pneumopathy is characterized by a complex clinical picture and heterogeneous pathological lesions, both involving alveolar and vascular components. The severity and distribution of morphological lesions associated with SARS-CoV-2 and how they relate to clinical, laboratory, and radiological data have not yet been studied systematically. The main goals of the present study were to objectively identify pathological phenotypes and factors that, in addition to SARS-CoV-2, may influence their occurrence. Lungs from 26 patients who died from SARS-CoV-2 acute respiratory failure were comprehensively analysed. Robust machine learning techniques were implemented to obtain a global pathological score to distinguish phenotypes with prevalent vascular or alveolar injury. The score was then analysed to assess its possible correlation with clinical, laboratory, radiological, and tissue viral data. Furthermore, an exploratory random forest algorithm was developed to identify the most discriminative clinical characteristics at hospital admission that might predict pathological phenotypes of SARS-CoV-2. Vascular injury phenotype was observed in most cases being consistently present as pure form or in combination with alveolar injury. Phenotypes with more severe alveolar injury showed significantly more frequent tracheal intubation; longer invasive mechanical ventilation, illness duration, intensive care unit or hospital ward stay; and lower tissue viral quantity (p < 0.001). Furthermore, in this phenotype, superimposed infections, tumours, and aspiration pneumonia were also more frequent (p < 0.001). Random forest algorithm identified some clinical features at admission (body mass index, white blood cells, D-dimer, lymphocyte and platelet counts, fever, respiratory rate, and PaCO2 ) to stratify patients into different clinical clusters and potential pathological phenotypes (a web-app for score assessment has also been developed; https://r-ubesp.dctv.unipd.it/shiny/AVI-Score/). In SARS-CoV-2 positive patients, alveolar injury is often associated with other factors in addition to viral infection. Identifying phenotypical patterns at admission may enable a better stratification of patients, ultimately favouring the most appropriate management. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Machine Learning , Respiratory Distress Syndrome/etiology , SARS-CoV-2/pathogenicity , Vascular System Injuries/etiology , Aged , Aged, 80 and over , Female , Humans , Male , Respiratory Distress Syndrome/diagnosis , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , Vascular System Injuries/diagnosis , Vascular System Injuries/virology
SELECTION OF CITATIONS
SEARCH DETAIL